
	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

1	
  of	
  17	
  

	
  
	
  
	
  

System	
  and	
  Software	
  Architecture	
  	
  
Modeling	
  Language	
  

(version	
  2.0)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Mikhail	
  Auguston	
  
Naval	
  Postgraduate	
  School	
  
Monterey,	
  California,	
  USA	
  

maugusto@nps.edu	
  
wiki	
  site:	
  http://wiki.nps.edu/display/MP	
  

	
  
	
  



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

2	
  of	
  17	
  

Extended	
  BNF	
  notation	
  
	
  
(* P *) – P repeated zero or more times 
(+ P +) – P repeated one or more times 
(* P * E) – P repeated zero or more times, separated by E 
(+ P + E) – P repeated one or more times, separated by E 
(A | B | C)  - alternative 
[ A ]  - optional A 
 

Lexics	
  
	
  
‘ttt’  - terminal string 
Id     - identifier 
Spaces, eol, and tabs are not syntactically significant 
comments /* … */ and // … eol are allowed in the MP source text. 
Note. // … eol comments are not yet available 
 

Some	
  conventions	
  
	
  
The trace derivation determines the MP semantics. Leftmost trace 
derivation for schemas, roots, and composite events is performed top-
down and from left to right using the event grammar rules. Composition 
operations act like a “crosscutting” derivation rules that may add new 
events and basic relations to the trace under derivation. 
 
The trace space is the set of events and binary relations between them 
emerging as a result of derivation process. It is produced by grammar 
rules and composition operations. 
 
For a schema  
SCHEMA S 
ROOT R1: …; 
ROOT R2: …; 
… 
ROOT Rn: …; 
 
Schema’s S event trace derivation follows an implicit grammar rule 

S: { R1, R2, … , Rn } 
and encompasses the composition operations interlacing the root rules 
and defined in the BUILD blocks attached to the schema and to other 
event grammar rules. 
 
Any root or included schema’s instance (NEW schema_name;) should 
appear in the MP source code before its use in composition operation, 
so that the trace derivation from the grammar rules could be 
accomplished before application of composition operations on those 
traces. Reused schemas should be declared with the INCLUDE statement. 
 
 
 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

3	
  of	
  17	
  

 
 
 
 
 
 
 

This is a draft document for MP2 beta-testers.  
MP2 is still a work in progress. 

 
Syntax rules for MP2 constructs not yet implemented 

are highlighted in red. 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

4	
  of	
  17	
  

Syntax	
  rules	
  
 
(1) model:   schema(2)  
    (* ( assertion(32) | query (48)) ‘;’ *) 
; 
 
(2) schema:  'SCHEMA' schema_name(3)  
    (* 'INCLUDE' schema_name(3) ‘;’ *)   
    (* (  rule(4)          |  
         composition_operation(20) | 
      ‘NEW’ schema_name(3)    )  
       ‘;’  
    *)  
    [ Build_block(31)]  
; 
Reused schemas should be announced with INCLUDE before the schema’s name appears 

somewhere in NEW composition. The scope of the host schema is applied to the included 
schema. 

Derivation of the schema’s trace proceeds top-down and from the left to right. Composition 
operations outside the BUILD block are performed following the order of derivation, 
immediately after the root derivation and composition operations appearing in the 
schema before them were performed, and hence may speed up the trace derivation by 
rejecting the previously derived root traces before proceeding with the next roots. 
Operations within the BUILD block are performed after all the derivations in schema’s 
body have been completed. Schema’s BUILD block may also define attributes for the 
whole schema. 

 
(3) schema_name: Id  -- schema’s name is an identifier 
; 
 
(4) rule: ('ROOT' root_name(5)| event_name(8) ) ':'   
    pattern_list(6)   
    [ Build_block(31)]   
; 
-- absence of the ROOT keyword yields a composite event declaration 
 
(5) root_name: Id  root name is an identifier 
; 
 
(6) pattern_list: 	
   (* pattern_unit(7) *) 
; 
 
(7) pattern_unit:(  event_name(8)  | 
      alternative(9)  |  
      iteration(11)  |  
      iterator_plus(13) | 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

5	
  of	
  17	
  

      set(14)   | 
      set_iterator(15) |  
      set_iterator_plus(16)| 
      optional(17)   | 
    ‘<|’ pattern_list(6) when_clause(18) ‘|>’| 
     empty  
    ) 
; 
Alternative with a single branch yields just a sequence pattern. 
Empty option is needed to balance probabilities assignment, e.g. in (A | B | ) empty 
alternative has probability 1/3, but in [(A|B)] it will have probability ½. 
ROOT event  may be initially empty, and then assigned some contents via MAP  
<|  … |> provides the scope for the WHEN clause, see(18)  for details 
 
(8) event_name:   Id   
   -- event name is an identifier, atomic or composite event name 
; 
   
(9) alternative: 
 '(' (+ [ probability(10)] (pattern_list(5) +'|') ')'    
; 
-- probability to select the alternative during the trace generation,  
-­‐-­‐	
  each	
  selection	
  is	
  independent	
  from	
  the	
  previous	
  history	
  
-- empty option is needed to balance probabilities assignment, e.g. in (A|B| ) empty 
	
  -- alternative has probability 0.33333, but in [(A|B)] it will have probability 0.5; 
	
  
(10) probability: '<<' float_number  '>>' 
; 
-- float_number should be in the range 0.0 – 1.0, 
-- sum of probabilities within the alternative should be 1.0 
-- probabilities not provided explicitly, are assigned evenly to supplement the total sum to 1.0 
-- probabilities are used only in the random trace generation mode 
 
(11) iteration: 
 '(*' [ iteration_scope(12)] pattern_list(5)'*)'  
; 
 
(12) iteration_scope: '<' [  natural_number '..' ] 
        natural_number   '>' 
; 
-- iteration range < min .. max >  covered during trace generation 
-­‐-­‐	
  the	
  default	
  is	
  	
  <	
  0	
  ..	
  scope	
  >  
--  < n > is the same as <n .. n>	
  
 
(13) iterator_plus:   
   '(+' [ iteration_scope(12)] pattern_list(6)'+)'  



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

6	
  of	
  17	
  

; 
-- the default is < 1 .. scope > 
-- the lower limit can not be less than 1 
	
   	
  
(14) set:  '{' (*  pattern_list(6) * ',') '}' 
; 
-- set implies only IN relation between the set and its elements 
-­‐-­‐	
  the	
  default	
  is	
  	
  <	
  0	
  ..	
  scope	
  >  
--  < n > is the same as <n .. n>	
  
	
  
(15) set_iterator:  
   '{*' [ iteration_scope(12)] pattern_list(6) '*}'   
; 
 
(16) set_iterator_plus:  
   '{+' [ iteration_scope(12)] pattern_list(6) '+}'   
; 
-- the default is < 1 .. scope > 
-- the lower limit can not be less than 1 
 
(17) optional: '[' [ probability(10)] pattern_list(6)']' 
; 
-- the default probability is 0.5 
 
(18) when_clause:  'WHEN' (+ when_unit(19) + ',')  
; 
-- the scope of WHEN clause determines the events which could be interrupted, see (7) 
 
(19) when_unit:  
  [probability(10)] event_name(8) '==>' pattern_list(6) 
 -- event_name is a non-root event 
; 
WHEN unit can be interrupted by another triggering event; 
it will be included as alternative for each event (atomic, composed, or container) in the 
WHEN scope (with the  probability, if defined; probabilities are prorated if needed); 
triggering event should not appear within pattern list preceding WHEN unit in the WHEN 
block; 
Semantics: 
WHEN event defines an interruption of the trace within its scope and continuation with the 
WHEN event and its associated pattern list. This option may be computationally expensive 
and should be used with care, to specify for instance an event that may occur in the 
environment at any unpredictable time moment. 
 
We need the concept of CUT(E) as a pattern specifying possible initial segments of event 
trace for the event pattern E, when E has been interrupted while generating its event trace. 
 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

7	
  of	
  17	
  

1) CUT(A) =  [ A ] if  A is atomic event pattern 
2) CUT(A) =  [ A: CUT( Body) ] if A is a composite event A: Body 
3) CUT(A B) = (CUT(A) |  A    CUT(B) ) 
4) CUT( (A | B) ) = (CUT(A) | CUT(B) ) 
5) CUT( (* <n..m> E *) ) =   (* <0..m-1> E *) CUT(E) 
6) CUT( {A, B}) = { CUT(A), CUT(B) } 
7) CUT( {* <n..m>  E *}) =  {* <0..m>   CUT(E) *} 
8) CUT( (+ E +) ) =   (* E *) CUT(E) 
9) CUT( {+  E +} ) =  {* CUT(E) *} 
 
The meaning of when-clause pattern can be defined as: 
 
<| P WHEN <p1> A1 ==> A2,  <p2> B1 ==> B2, … |>  = 
 ( P         |  
  CUT(P)  
 (* ( <p1> A1 CUT(A2) | <p2> B1 CUT(B2) | … ) *)  
 (<p1>  A1 A2 | <p2> B1 B2 | … )     ) 
MP trace scope limit is applied to the induced iteration in WHEN definition as well. 
 
Composition	
  operations	
  	
  
	
  
(20) composition_operation:  
    (  shared_composition(21)  | 
   coordinate_composition(23)  |  
   ‘ENSURE’ bool_expr(38)    )  
; 
  
(21) shared_composition: 
     (+  
    (+ (root_name(5)| variable(25) ) + '|+|') 
      + ',') 
      'SHARE' 'ALL'  
      (+  event_name(8) + ',')  
; 
A |+| B means exclusive union (partition), i.e. if A |+| B, C SHARE ALL D each event D in C 

should be also either in A or in B, but not in both. This construct is useful for specifying 
the use of critical shared resources. Usually architecture models don’t address resource 
contention problems, assuming that resolution for it is provided by lower level design. 

 
(22) new_instance: ‘NEW’ ( schema_name(3) | event_name(8) ) 
; 
NEW brings to the trace space a new instance of event. No duplication of this schemas root 

event is allowed. NEW cannot be applied to the included schema’s roots or composite 
events. 

 
(23) coordinate_composition:  



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

8	
  of	
  17	
  

  ‘COORDINATE’ [‘<!>’]  
  (+ coordination_source(24) + ‘,’) 
  ‘DO’ 
  (+ ( variable(25) ‘:’ new_instance(22)  | 
       add_relation(26)     | 
   MAP_composition(29)    | 
   shared_composition(21)    | 
   coordinate_composition(23)  
      ) 
    ‘;’ +) 
  ‘OD’ 
; 
COORDINATE is essentially a loop, synchronous or asynchronous, over one or more event 

sets of equal size (coordination sources), for each tuple of events selected from the 
coordination sources the composition operations within DO – OD are performed. The 
COORDINATE composition uses event selection patterns to specify subsets of traces that 
should be coordinated.  

 
Synchronized composition requires that events selected in each coordinated trace are totally 

ordered (with respect to the transitive closure of PRECEDES), selected event sets should 
have the same number of elements, and the coordination follows this ordering 
(synchronous coordination). If any of selected event sets is not totally ordered, the 
synchronized coordination operation fails to produce a resulting trace. 

 
 Presence of <!> means asynchronous coordination. Selected sets may be totally ordered or 

not. But now the resulting merged traces will include all permutations of events from the 
coordination sources. This assumes that other constraints, like the partial ordering 
axioms are satisfied. Each permutation yields one potential instance of a resulting trace 
for the schema deploying this composition. Use of <!> may significantly increase the 
number of composed traces. 

 
(24) coordination_source:   
  variable(25) ‘:’ selection_pattern(27)  
  [ ‘FROM’ (root_name(5) | variable(25) | ‘this’) ]  
; 
‘this’ refers to the schema, root or composite event in the BUILD block of which it appears.  
Absence of FROM clause is equivalent to ‘FROM this’ 
 
(25) variable: $Id  -- MP variable is an identifier preceded by ‘$’ 
; 
 
(26) add_relation: ‘ADD’   
    (+ variable(25)  
  (‘IN’ | ‘PRECEDES’ | ‘CONTAINS’ | ‘FOLLOWS’)  
   variable(25) + ‘,’) 
; 
 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

9	
  of	
  17	
  

(27) selection_pattern:  
  ( event_name(8)     |  
    alternative_of_event_names(28)  ) 
; 
 
(28) alternative_of_event_names: 
   ‘(‘ (+ event_name(8) + ‘|’) ‘)’ 
; 
 
(29) map_composition:  
   (+ ‘MAP’ map_unit(30) ‘AS’ map_unit(30) +‘,’) 
; 
-- the purpose of map construct is to implement event aliasing, source and target events may 
be in the current or reused schema; this can be considered as a generalization of the SHARE 
ALL; 
 
(30) map_unit:  
   ( event_name(8)  
    [‘FROM’( root_name(5) | variable(25) |‘this’)]| 
     variable(25)         |  
     root_name(5) [‘FROM’ (variable(25) | ‘this’)]   ) 
; 
FROM clause absence is equivalent to ‘FROM this’ 
 
Build Blocks 
 
Build blocks describe event trace derivation activities performed when an instance of event is 
added to the tracespace (analog to the constructor method in OO programming languages). 
 
(31) Build_block:  
   ‘BUILD’ ‘{‘  
Event attribute is a binary relation added between the event associated with Build_block and 
other event or object  (number, string, Boolean value)  
 
   (* ( plain_attribute_declaration(33) | 
        [ ‘disj’] relation_name(32) ‘:’ 
    (+ ( event_name(8) | new_instance(22) ) +‘,’)| 
 
event name without NEW refers to an event instance already present in the derivation; 
‘disj’ ensures that event instances brought from the already accomplished derivation are 
distinct from each other, NEW event instances are disjoint by definition. 
 
    variable(25) ‘:’ new_instance(22)  | 
creates a new instance of event (including the whole schema event) for use in the  following 
composition operations. 
 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

10	
  of	
  17	
  

    composition_operation(20)   ) 
   * ‘;’) 
   ‘}’ 
; 
 
(32) relation_name: Id 
; 
relations IN, CONTAINS, PRECEDES, FOLLOWS are predefined 
 
Event	
  plain	
  attribute	
  declarations	
  
	
  
Event attributes are specified in BUILD block(31). Immutable attributes only in this version, 

i.e. for each event instance the value of event attribute is assigned only once, but in case 
of RAND(n..m) the value may be different for different instances of the same  event type.  
No dependencies between attributes (synthesized or inherited attributes) in this version 
as well. 

 
(33) plain_attribute_declaration:   
  (+ Id + ‘,’) ‘:’ type(34) [‘=’ initial_value(35) ]  
; 
 
(34) type:   
 ( ‘int’ | ‘double’ | ‘string’ | ‘bool’) 
; 
 
(35) initial_value: (integer_number | float_number |  
    string_constant | ‘RAND’ ‘(‘ interval(36) ‘)’ |  
    ‘true’ | ‘false’ ) 
; 
 
(36) interval:  integer_number ‘..’ integer_number  
; 
 
-- predefined attributes: 
-- double clock_begin 
-- double clock_end 
-- double duration 
-- string event_type 
 
Assertions and Queries 
 
Assertions 
 
(37) assertion:  'ASSERT'  Id   -- assertion name  
      bool_expr(38)  



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

11	
  of	
  17	
  

; 
 
(38) bool_expr: ( (‘FOREACH’ | ‘EXISTS’) variable(25) ‘:’   
      ( root_name(5) |  
     event_name(8)‘FROM’(root_name(5)|variable(25))  
       )    
       bool_expr(38)     | 
      bool_expr0(39) 
      ) 
; 
 
(39) bool_expr0:  bool_expr1 (* '->' bool_expr1 *) 
; 
 
(40) bool_expr1:  bool_expr2 (* 'OR' bool_expr2 *) 
; 
 
(41) bool_expr2: bool_expr3 (* 'AND' bool_expr3 *) 
; 
 
(42) bool_expr3:  (   bool_aggregate_op(59)   | 
 
      '(' bool_expr(38) ')' | 
  
      'NOT' bool_expr3(42) | 
 
      special_predicate (46)  | 
 
      ( event_instance(43)  
       ('PRECEDES'   | 'IN'  |  

        'PRECEDES*'  | 'IN*' ) 
             event_instance (43)     )| 
 
     ( expression(53)  
       comparison_operation(43)  
       expression(53) ) 

         ) 
; 
-- need to separate IN for direct, and IN* for transitive closure, similarly for PRECEDES 
and PRECEDES* 
 
(43) comparison_operation:  
  ( ‘<’ | ‘<=’ | ‘==’ | ‘!=’ | ‘>=’ | ‘>’ ) 
; 
 
(44) event_instance:  



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

12	
  of	
  17	
  

   ( variable(25) | 
       event_location(45) ’(‘ event_name(8) ‘)’  
     ‘(‘ variable(25) ‘)’  
     [ ‘SUCH’ ‘THAT’ bool_expr(38) ] 
              -- yields an event object, or NULL if such does not exist 
    ) 
; 
 
(45) event_location: 
  ( ‘Closest_enclosing’| ‘Farthest_enclosing’ |  
    ‘Closest_contained’| ‘Farthest_contained’ | 
    ‘Closest_preceding’| ‘Farthest_preceding’ |  
    ‘Closest_following’| ‘Farthest_following’   ) 
; 
 

 
(46) special_predicate:  
  direction(47)  ’(‘ event_name(8) ‘)’  
     ‘(‘ variable(25) ‘)’  
     [ ‘SUCH’ ‘THAT’ bool_expr (38)] 
; 
 
(47) direction: (  ‘Is_enclosed_in’ | ‘Has_enclosing  |  
    ‘Has_previous’   | ‘Has_following’ | 
  
-- these predicates are based on transitive closures of IN* and PRECEDES*  
 
    ‘Belongs_to’  | ‘Contains’ | 
    ‘Has_preceding’| ‘Has_next’   ) 
 
-- these predicates are based on direct IN and PRECEDES 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

13	
  of	
  17	
  

;  

 
Queries	
  
-- a query is evaluated separately on each event trace; 
 
(48) query: 
  ( SAY_clause(49)  |  global_query(50) | 
    'CHECK'  ( Id  |  -- Id is assertion name 
              bool_expr(38)) 
    [ SAY_clause ] 
    [ ‘ONFAIL’ SAY_clause ] 
   )  
; 
 
(49) SAY_clause:  ‘SAY’ ‘(‘ (+ expression(53) +) ‘)’ 
; 
 
-- global queries are evaluated on the whole set of generated traces  for a given MP mode, 
they are distinguished by the presence of $$TOTAL variable or global_estimate expression; 
 
(50) global_query:  SAY_clause_1  
; 
 
(51) SAY_clause_1: ‘SAY’ ‘(‘ (+ (  global_estimate(52)|  
        text_string |    
        ‘$$TOTAL‘   )  
       +) ‘)’ 
; 
 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

14	
  of	
  17	
  

(52) global_estimate: ‘P?’ ‘/’ bool_expr (38) 
; 
-- returns the ratio of number of traces satisfying bool_expr to the total number of generated 
traces; 
 
Semantics: 
	
  
 Queries are performed after the generation of an event trace or the whole set of traces 
within given scope has been completed (in exhaustive or random mode). Each query 
generates its own result. 
 
 CHECK A will search the set of generated event traces for the counterexample, a trace, 
which does not satisfy assertion A. 
 
If operation within an expression cannot be completed, it yields NULL as a result. 
NULL also represents Boolean constant False, whereas any value different from NULL 
represents Boolean constant True. 
 
(53) expression:  aggregate_op (56) |  bool_expr (38)| 
      event_instance ‘.’ event_attribute_name | 
   -- event attributes may be used in  

-- expressions built from 
   --  constants, metavariables 
   -- operations  +, -, *, /, unary -,  ==, !=,  >, <, >=, <=, 
   --  set-theoretical operations +(union), & (intersection), 
   --  - (set difference), etc.  
 
   special_function (54)| 
   NULL |  -- empty set, 

       --  0 if used as an argument in an operation 
   integer_number | float_number | 

string_constant  
; 
 
(54) special_function:  
 ‘Number_of’ ’(‘ event_name(8) ‘)’  
  navigation_direction(55) ‘(‘ ( variable(25) |  
          root_name  )‘)’ 
; 
 
(55) navigation_direction: (  ‘before’  |  
      ‘after’   |  
      ‘in’  |  
      ‘enclosing’ ) 
; 
 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

15	
  of	
  17	
  

(56) aggregate_op: 
  [ operation(57) '/' ]  
If operation is omitted, the result is a set of events 
	
  
  '{'  [variable(25) ':'] search_pattern (58) 
The scope of variable is that aggregate operation only. 
 
  [ 'FROM' ( root_name(5)  |  

 variable(25) |  
     event_path_attribute (60) ) ] 
If FROM is omitted, the range assumed to be the whole event trace 
	
  
  ['APPLY' expression ] 
If APPLY is present, the aggregate operation returns  multi-set of non-event values (integer, 
string, etc., depending on the type of expression.) 
	
  
 '}' 
; 
 
(57) operation: 
 ( 'SUM'  |  -- numerical sum 
  'TIMES' |  -- numerical product 
  'MAX'  |  -- numerical max 
  'MIN'  |  -- numerical min 
  'CARD'  |  -- number of elements in the resulting (multi-) set 
  'AVG'  |  -- result of SUM divided by CARD 
  'OR'  |  -- yields bool, requires APPLY bool_expr 
  'AND'    -- yields bool, requires APPLY bool_expr 
 ) 
; 
 
(58) search_pattern:  
 (  ( event_name(8) | ‘ANY’ ) |  
  ‘(‘ (+ [variable(25) ':'] event_name(8) +)    ‘)’ | 
  ‘{‘ (+ [variable(25) ':'] event_name(8) +’,’) ‘}’ | 
  ‘(‘ (+ [variable(25) ':'] event_name(8) +’|’) ‘)’ 
 ) 
 [ ‘SUCH’ ‘THAT’ bool_expr(38) ]  
; 
-- event_name may be atomic or composite event type; 
-- ANY  matches any event; 
-- Typical use: 
-- Chain:  ( A B C ) 
-- Concurrent slice: { A, B, C } 
-- Concurrent( v)  means that for each pair of events e1, e2 IN v 
   NOT ( e1 PRECEDES e2 OR  e2 PRECEDES e1), although e1 IN e2 is OK 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

16	
  of	
  17	
  

 See Example 17. 
 
-- Alternative: (A | B | C) 
-- Local variables: ( $x: A  B  $y: C ) and then use them in the expression, like 
-- OR/{  ( $x: A  B  $y: C ) APPLY  ($y.time_end - $x.time_begin > 20) } 
-- the ‘&&’ bool_expr provides additional SUCH THAT constraint 
     
(59) bool_aggregate_op: -- is aggregate_op(56) with OR or AND operation 
; 
 
(60) event_path_attribute: variable(25) ‘.’  
          ( PREV_PATH |  

NEXT_PATH |  
PARENTS | DESCENDANTS 
); 

-- these attributes provide sets of events under PRECEDES* and IN* relations with the event 
in variable. Used in (56) 
 
Abbreviations for some bool_aggregate_op  
 
FORALL variable: search_pattern FROM source | bool_expr 
 
is an abbreviation for 
 
AND/{ variable: search_pattern FROM source APPLY bool_expr } 
 
 
Correspondingly, 
 
EXISTS variable: search_pattern FROM source | bool_expr 
 
is an abbreviation for 
 
OR/{ variable: search_pattern FROM source APPLY bool_expr } 
 
 
Another abbreviation. 
 
EXISTS variable: search_pattern FROM source 
 
is an abbreviation for 
 
CARD/{ variable: search_pattern FROM source } > 0 
 
 

Examples of queries 



	
   	
   	
   	
   	
   	
   Draft	
   	
  	
   last	
  modified:	
  April	
  3,	
  2015	
  

17	
  of	
  17	
  

	
  
1)	
  	
   SAY	
  “number	
  of	
  send/receive”	
  	
  CARD/	
  {	
  $x:	
  (send	
  |	
  receive)	
  FROM	
  Task_A	
  };	
  
	
  
2)	
  	
   CHECK	
  	
  SUM/{	
  	
  $y:	
  send	
  FROM	
  Task_A	
  APPLY	
  $y.duration	
  }	
  	
  >	
  100	
  
	
  
3)	
  	
   CHECK	
  NOT	
  EXISTS	
  {Generator_off,	
  Radar_working};	
  	
  	
  
	
   	
   -- slice,  by default FROM extends to the whole trace 
 
	
  	
  


